

BOCCHETTE DI MANDATA IN ALLUMINIO

AL.V - AL.O AL.VO - AL.OV

CARATTERISTICHE COSTRUTTIVE

Le bocchette di mandata sono state progettate per il montaggio a parete o a canale, in generale per un lancio di tipo orizzontale. Sono a singolo o doppio ordine di alette mobili con profilo aerodinamico, passo 20 mm, singolarmente orientabili e sono caratterizzate da una cornice perimetrale da 25 mm con taglio a 45° ed eventuali fori perimetrali per il fissaggio con viti a vista.

SISTEMA DI FISSAGGIO

Fissaggio standard con molle a scomparsa per canale o telaio liscio, a richiesta controtelaio corrugato per muratura. A richiesta fori perimetrali di fissaggio su cornice, realizzabili anche svasati.

MATERIALE

Costruzione in profilati di alluminio estruso anodizzato al naturale.

A richiesta veniciatura in tinte della scala RAL.

ACCESSORI

SV.

Serranda di regolazione a contrasto.

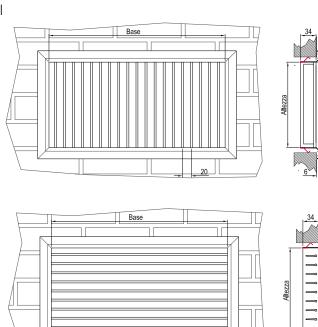
SK.

Serranda captatrice.

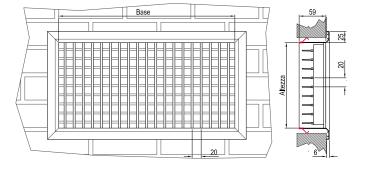
PL. e PL.ISO posteriore

Plenum di distribuzione aria con piega perimetrale e attacco posteriore, senza o con isolamento esterno.

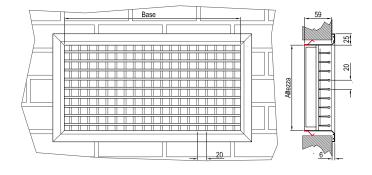
PL. e PL.ISO laterale


Plenum di distribuzione aria con piega perimetrale e attacco laterale, senza o con isolamento esterno. ESECUZIONE STANDARD

CM. e CM.CE


Controtelaio a "L" liscio o corrugato per muratura, senza o con cerniera.

DIMENSIONI



AL.O

 $\mathsf{AL}.\mathsf{V}$

AL.VO

AL.OV

Area libera di passaggio A_{eff} dm^2

Altezza	Base - mm										
mm	120	200	280	360	440	520	600	680	760	840	920
80	0,72	1,20	1,68	2,16	2,64	3,12	3,60	4,08	4,56	5,04	5,52
160	1,44	2,40	3,36	4,32	5,28	6,24	7,20	8,16	9,12	10,08	11,04
240	2,16	3,60	5,04	6,48	7,92	9,36	10,80	12,24	13,68	15,12	16,56
320	2,88	4,80	6,72	8,64	10,56	12,48	14,40	16,32	18,24	20,16	22,08
400	3,60	6,00	8,40	10,80	13,20	15,60	18,00	20,40	22,80	25,20	27,60

PESI

AL.V - AL.O kg

Altezza	Base - mm									
mm	120	200	280	360	400	520	600	720	800	920
80	0,2	0,2	0,3	0,4	0,4	0,5	0,5	0,6	0,7	0,7
160	0,3	0,4	0,4	0,5	0,6	0,7	0,8	0,9	1	1,2
240	0,4	0,5	0,6	0,7	0,8	0,9	1,1	1,2	1,4	1,6
320	0,4	0,6	0,7	0,9	1	1,2	1,3	1,6	1,7	2
400	0,5	0,7	0,9	1,1	1,2	1,4	1,6	1,9	2,1	2,4

AL.VO - AL.OV kg

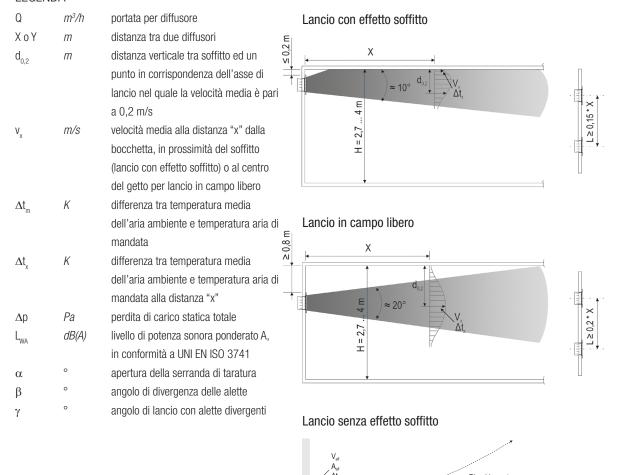
Altezza	Base - mm									
mm	120	200	280	360	400	520	600	720	800	920
80	0,3	0,4	0,5	0,6	0,7	0,9	1	1,2	1,3	1,5
160	0,4	0,6	0,8	1	1,1	1,4	1,6	1,9	2,1	2,4
240	0,6	0,9	1,2	1,4	1,6	2	2,2	2,7	3	3,4
320	0,8	1,1	1,5	1,8	2	2,5	2,9	3,4	3,8	4,3
400	0,9	1,3	1,8	2,2	2,4	3,1	3,5	4,1	4,6	5,2

Con l'aggiunta della serranda di regolazione SV, i valori indicati in tabella vanno moltiplicati:

- per 2,1 fino ad H = 200 mm;
- per 1,9 con H = da 240 a 320 mm;
- per 1,75 con H = da 360 a 480 mm;
- per 1,55 con H superiori a 480 mm.

Con l'aggiunta della serranda di regolazione SK, i valori indicati in tabella vanno moltiplicati:

- per 2,1 fino ad H = 200 mm;
- per 2 con H = da 240 a 320 mm;
- per 1,9 con H superiori a 320 mm.


CARATTERISTICHE AERAULICHE E ACUSTICHE

Le caratteristiche aerauliche sono state misurate nella nostra sala prove, variando portata, divergenza del lancio e posizione del punto di misura.

La velocità ricavabile dai diagrammi è intesa come velocità media di 0,2 m/s riscontrabile ad una determinata distanza dal soffitto e dalla parete di lancio.

I dati acustici relativi al livello sonoro generato sono stati misurati presso la camera riverberante dell'Istituto Giordano, rapporto di prova 205710 del 16/12/2005.

LEGENDA

Nel caso di più bocchette contigue, i dati ricavabili dal diagramma di pagina 8 sono ancora validi se la distanza tra le due bocchette è maggiore di quella indicata a lato delle due tipologie di lancio (con effetto soffitto o in campo libero).

Raffreddamento

ESEMPIO DI SCELTA

Dati

Per un ambiente avente dimensioni B x H x L = 5 x 3,0 x 14 mè prevista la portata complessiva di 1400 m³/ h con $\Delta t_{M} = -10$ K. Si prevedono due bocchette a doppio ordine di alette con serranda di taratura. Si richiede il calcolo di tutti i parametri aeraulici.

Soluzione

 $\Delta p = 20 \text{ Pa};$

Si prevedono due bocchette AL.VO, con serranda di taratura SV., di dimensioni 840 x 120 mm e portata pari a 700 m³/ h cadauna.

Dalla tabella di pagina 4 si legge $A_{off} = 6,64 \text{ dm}^3$, per cui si ricava $v_{aff} = 700/(3600 \times 0,0664) = 2,93 \text{ m/s}.$ Dal grafico di pagina 8 "Perdite di carico - Potenza sonora" si ottiene, per $v_{off} = 2,93$ m/s e $\alpha = 45^{\circ}$:

 $L_{WA} = 39$ dB(A) che, corretto in base al coefficiente indicato in Tabella 1 a pagina 8, diventa

 $L_{MA} = 39 \text{ dB(A)} - 3 = 36 \text{ dB(A)}.$

Nel caso di divergenza delle alette i valori sopra indicati devono essere corretti in base ai coefficienti indicati nella Tabella 2 di pagina 8, per cui risulta $\beta = 45^{\circ}$:

$$\Delta p = 20+1 = 21 \text{ Pa};$$

$$L_{WA} = 39 \text{ x } 1,1 = 42,9 \text{ dB(A)}.$$

Velocità al soffitto e v_{o 2} ad una determinata distanza dalla bocchetta e ad un'altezza da pavimento pari a H - d_{0.2} ricavate dal grafico di pagina 8:

- a 5 m:
$$v_x = 0.9$$
 m/s; $v_x = v_{0.2}$ ad un'altezza pari a 3 - 0.73 = 2.27 m;

- a 8 m:
$$v_x = 0.62$$
 m/s; $v_x = v_{0.2}$ ad un'altezza pari a 3 - 0.94 = 2.06 m;

- a 12 m:
$$v_x = 0.41$$
 m/s; $v_x = v_{0.2}$ ad

Calcolo di Δt :

- a 5 m:
$$\Delta t_{\chi}/\Delta t_{m}=0.33$$
; per cui si ottiene $\Delta t_{c}=0.33$ x (-10) = -3.3 K;

$$\Delta t_{\chi} = 0.00 \text{ A (-10)} = -0.00 \text{ A},$$

- a 8 m:
$$\Delta t / \Delta t_m = 0.22$$
; per cui si ottiene

$$\Delta t_v = 0.22 \text{ x (-10)} = -2.2 \text{ K};$$

- a 12 m:
$$\Delta t_x / \Delta t_m = 0.14$$
; per cui si

ottiene $\Delta t_x = 0.14 \text{ x (-10)} = -1.4 \text{ K}.$

Nel caso di divergenza delle alette $\Delta t/\Delta t_{_{m}}$ ricavato dal diagramma va moltiplicato per il coefficiente indicato nella Tabella 2 di pagina 8, in questo caso 0,7, quindi anche i Δt prima calcolati vanno moltiplicati per 0,7.

Dati

Per una bocchetta di mandata con $A_{eff}=12~dm^2$ ed una portata di 1900 m³/ h, calcolare la deviazione del lancio ad una distanza di 6,8 m per $\Delta t=$ -10 K e $\Delta t=$ +7 K con alette diritte e con un angolo di divergenza $\beta=45^\circ$.

Soluzione

$$\begin{split} v_{\text{eff}} &= \text{Q / A}_{\text{eff}} = 1900 \text{ / (0,12 x 3600)} = 4,4 \text{ m/s} \\ \text{Individuato il punto d'incontro tra A}_{\text{eff}} &= v_{\text{eff}} \text{ nel grafico} \\ \text{di pag. 9, spostarsi orizzontalmente verso destra fino} \\ \text{ad incrociare la retta L} &= 6,8 \text{ m; da questo punto} \\ \text{scendere verticalmente fino ad incontrare l'ascissa} \\ \text{y/$\Delta t}_{\text{m}}, \text{ in questo caso pari a 0,12 m/K}. \end{split}$$

Pertanto si avrà:

 $y = \Delta t_{_{m}} \ x \ (y/\Delta t_{_{m}}) = -10 \ x \ 0,12 = -1,2 \ m$ in raffrescamento;

 $y=\Delta t_{_{m}}~x~(y/\Delta t_{_{m}})=+7~x~0,12=+0,84~m$ in riscaldamento.

Nel caso di alette divergenti si applicano i coefficienti di correzione indicati nella Tabella 3 a pag.9; pertanto con $\beta=45^\circ$:

$$v_{eff} = 4.4 \times 0.7 = 3.08 \text{ m/s}.$$

Con questo nuovo valore si ricava che $y/\Delta t_m = 0,24$; quindi:

$$y = \Delta t_m \times (y/\Delta t_m) = -10 \times 0.24 = -2.4 \text{ m} \text{ in raffrescamento;}$$

$$y=\Delta t_{_{m}}~x~(y/\Delta t_{_{m}})=+~7~x~0,24=+~1,68~m$$
 in riscaldamento.

Perdita di carico - Potenza sonora

Bocchetta completa di serranda di regolazione

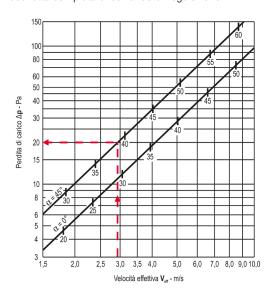
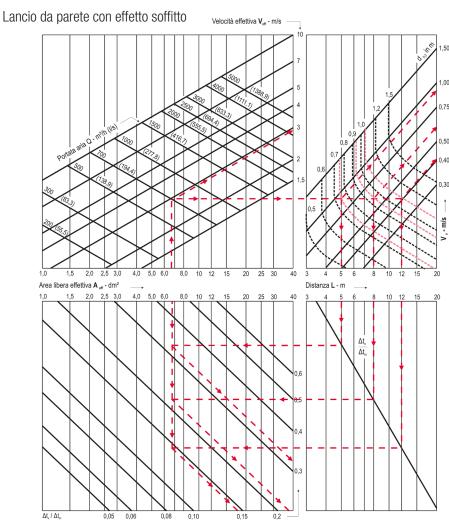
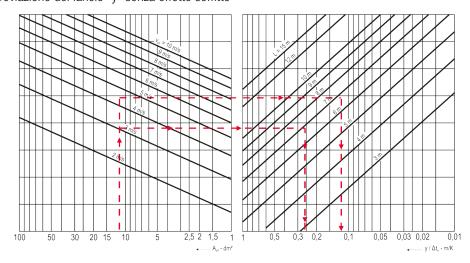



Tabella 1: Coefficienti di correzione per A_{eff}

A _{eff} dm ²	1	5	10	20	40	80
L _{WA}	-8	-4	0	+3	+6	+9


Tabella 2: Coefficienti di correzione per divergenza alette

Angolo	β				
Alette frontali	45°	90°			
Serranda	0°	0°			
L _{wa}	x 1,1	x 1,2			
Δρ	+1	+3			
$\Delta t_{\chi}/\Delta t_{_{m}}$	0,7	0,6			

Deviazione del lancio "y" senza effetto soffitto

Alette in posizione divergente

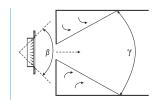


Tabella 3: Coefficienti di correzione per alette divergenti

β	45°	90° 60°		
γ	35°			
V _{eff}	x 0,7	x 0,5		

TESTO PER SPECIFICA TECNICA

Bocchetta di mandata a singolo o doppio ordine di alette singolarmente orientabili, con o senza serranda di taratura della portata, con o senza plenum isolato o meno, per montaggio con molle a scomparsa (standard), con fori perimetrali, con fori svasati perimetrali, con controtelaio e viti in vista o con controtelaio e molle.

Materiale

Alette e cornice in profilati di alluminio estruso anodizzato al naturale, alluminio grezzo, alluminio anodizzato in altre colorazioni o verniciato nelle tonalità della scala RAL.

Serranda a contrasto o captatrice in acciaio zincato, tarabile dal fronte.

Controtelaio a murare in lamiera d'acciaio zincata con nervature di irrobustimento oppure in lamiera liscia per cartongesso. Isolamento: isolante esterno a pannelli autoadesivi in schiuma di polietilene spessore 6 mm, euroclasse di reazione al fuoco B-s2, d0 (secondo la norma UNI EN 13501-1:2009).